香蕉影视欧美成人_99精品视频中文字幕_在线观看欧美理论a影院_日韩久久电影_国产美女精品在线_亚洲欧美区自拍先锋_欧美体内she精视频_亚洲国产精品久久久久

全固態鋰電池正極界面的研究匯總

鉅大鋰電  |  點擊量:0  |  2023年08月04日  

傳統鋰電池的有機液態電解質在高溫下極易起火,造成電池熱失控,具有較大安全隱患;同時,由于金屬鋰負極在電解液中極易出現枝晶,刺穿隔膜引起電池內短路,所以基于有機電解液的傳統鋰電池不能采用金屬鋰作為負極,限制了電池能量密度的進一步提升。


全固態鋰電池由于采用耐高溫的固態電解質代替常規有機液態電解質,故安全性好于傳統鋰電池。同時,由于固態電解質的機械性能遠優于電解液,所以其理論上可以有效阻擋金屬鋰負極在充放電過程中出現的枝晶,使得全固態鋰電池可以采用金屬負極,進一步提高電池的能量密度。


然而,固態電解質的本征電化學性能及其和正、負極的界面穩定性等多個方面的問題限制了全固態電池的實際應用。尤其在正極結構中,包括活性物質、導電劑和固態電解質等在內的不同組分之間固-固界面的穩定性限制了電池的容量發揮和循環壽命,是阻礙電池性能提升的重要瓶頸。


其中,固-固界面化學和電化學穩定性不佳導致正極材料固-固界面不斷發生化學和電化學反應,使鋰離子在反應過程中逐漸消耗,造成電池的容量衰減;其較差的機械穩定性導致正極材料固-固界面發生剝離,減小了正極活性物質和導電劑和集流體的接觸面積,使電池阻抗大幅新增,降低了電池的容量和循環壽命;界面熱穩定性不佳導致正極材料和固態電解質在高溫下容易發生分解和元素滲透,造成電極和電解質在高溫下相變從而失效,限制了電池的裝配工藝普適性。因此,提高全固態鋰電池正極材料固-固界面的穩定性是提升全固態鋰電池電化學性能的關鍵。


然而,對全固態鋰電池正極材料固-固界面基礎科學問題的認識不清限制了其性能的進一步提升。本文將對全固態鋰電池正極界面的化學穩定性、電化學穩定性、機械穩定性和熱穩定性的機理問題進行探討,對不同影響因素和優化方法進行總結和討論,為全固態鋰電池的開發和應用供應參考。


化學穩定性


正極材料固-固界面極大的阻抗是造成全固態鋰電池室溫電化學性能不佳的重要因素,而導致正極材料固-固界面阻抗過大的重要原因是該界面的化學穩定性和電化學穩定性不佳。其中,界面的化學穩定性是指在沒有電場或磁場力的情況下,界面保持原有物理化學性質的能力。在正極材料固-固界面中,化學穩定性不佳的兩種表現形式為正極材料間元素的相互擴散和空間電荷層的形成。


正極材料間元素的相互擴散通常發生在氧化物陶瓷固態電解質和氧化物正極材料之間的界面上。Kim等利用TEM和線性EDS發現LLZO和LCO的界面在室溫下存在50~100nm的元素擴散層,如圖1a所示,其重要成分為La2CoO4。但是,由于在室溫下正極材料間元素相互擴散的速度極慢,所以很難對該擴散過程生成的產物進行表征。


圖1LLZO/LCO界面的TEM照片(上)和線性EDS圖譜(下)(a);通過DFT計算得到的LCO/LPS界面(上)和LCO/LNO/LPS界面(下)在穩態下鋰離子濃度分布示意圖(b)


在全固態鋰電池中,當過渡金屬氧化物作正極、硫化物作電解質時,由于鋰離子在氧化物中的電勢比在硫化物中的高,所以鋰離子在電場力的驅動下從硫化物電解質遷移到氧化物正極材料中,直至界面兩端電勢平衡。但當達到平衡后,硫化物電解質和氧化物正極材料的界面處會形成一個類似電子導體中PN結的低鋰離子濃度區域,該區域被稱為空間電荷層。由于空間電荷層的鋰離子濃度較低,所以該區域的離子電導率較低,從而導致離子在該區域的遷移勢壘較高,造成該區域的阻抗急劇增大。如圖1b所示,通過在LCO表面包覆LNO可以有效抑制空間電荷層的形成。Yamamoto等利用電子全息照相對LCO和LPS之間的界面進行表征,證實了在該界面靠近LPS側存在因鋰離子重新排布形成的低離子濃度區域,即空間電荷層。盡管研究人員意識到了空間電荷層的存在,也證實了空間電荷層是導致基于硫化物固態電解質的全固態鋰電池阻抗過大的重要原因,但是有關空間電荷層的化學形成過程的機理依然認識不清。同時,由于外加電勢差的用途,界面處空間電荷層的化學行為更加復雜。


電化學穩定性


和化學穩定性不同,全固態鋰電池正極材料固-固界面的電化學穩定性體現的是在電場力用途下,界面保持原有物理化學性質的能力。全固態鋰電池正極材料固-固界面的電化學行為非常復雜,隨著固態電解質和正極材料種類的不同以及預處理方式的不同,正極材料固 ̄固界面表現出不同的電化學穩定性。本節將按電解質的種類對全固態鋰電池正極材料固-固界面的電化學穩定性進行介紹。


在基于硫化物固態電解質的全固態鋰電池中,由于硫化物固態電解質和正極材料之間的接觸面積較大,所以電解質和正極材料的界面在充放電過程中的元素相互擴散現象容易被表征。LPS固態電解質和LCO的界面在充放電過程中局部出現了Co3O4,且其位置并不固定,說明Co3O4是界面局部過充的產物。Auvergniot等利用掃描俄歇電子顯微鏡對LPSC固態電解質和LMO正極的界面進行表征,如圖2a所示,發現在LPSC表面有S、LiC、P2Sx和Li2Sn生成,說明LPSC在充放電過程中被氧化。高電子電導率的產物是造成硫化物固態電解質和正極材料界面在充放電過程中發生電化學反應的重要原因。近期研究發現,LPS的最高價帶高于LFP,由于電荷補償機制,在充放電過程中,LPS和LFP的界面處出現電化學活性,最終使該界面變成貧鋰區,即形成了空間電荷層,隨著S-S鍵和PS4四面體不斷發生聚合反應,空間電荷層繼續生長。此外,Sumita等發現隨著充放電過程的進行,硫化物固態電解質中S-S鍵發生可逆的生成和斷裂過程,如圖2b所示。說明在高電壓下,硫化物固態電解質具有一定的氧化能力,導致其在高電壓下的電化學穩定性很差。


圖2LMO/LPSC/Li-In全固態電池正極側循環前(上)和循環后(下)的SAM圖譜(a);LPS/LFP界面的電子層狀態密度(LDOS)等高線圖(利用+U能級計算得到的結果(上),利用HSE06雜化泛函能級計算得到的結果(下))(b)


相比于硫化物固態電解質,氧化物固態電解質和正極材料的固-固界面不存在空間電荷層效應,所以氧化物固態電解質和正極材料固-固界面的電化學反應重要體現在固態電解質和正極材料界面之間的元素在充放電過程中的相互擴散現象。Kim等證明了LCO和鈉超離子導體(NASICON)型固態電解質和LiPON的界面在充放電過程中沒有變化。但是,研究表明LCO和LMO和Garnet型固態電解質LGLZO的界面分別在3.0和3.8V時會發生分解,而且分解產物的生成速度遠高于這兩者和LGLZO化學反應產物的生成速度,因此,LCO和LMO和LGLZO的界面在高電壓下分解的驅動力重要是電化學驅動力,故LCO和LMO正極和LGLZO的電化學穩定性不佳。


由于聚合物固態電解質(SPE)的電壓窗口較小,所以當其和電壓平臺較高的正極材料,例如LCO和LNMO匹配時,在正極材料固 ̄固界面處會發生電化學反應,導致電池容量衰減,循環性能大幅降低。LCO/SPE/Li全固態電池循環10周后,容量衰減了42%,通過交流阻抗對電池在高電位下的阻抗測試發現,隨著電池在高電位的時間逐漸新增,正極側的阻抗逐漸增大,但是電解質和負極側的阻抗幾乎沒有變化,而且LCO和SPE界面處在循環后出現了高阻抗的Co3O4相。因此,正極材料和SPE間在高電壓下界面穩定性不佳是導致全固態電池極化過大的重要原因。


機械穩定性


在全固態鋰電池中,電極或固態電解質的機械穩定性不佳會造成電池的電化學性能大幅下降。其中,正極材料固-固界面機械穩定性不佳會造成全固態電池的極化大幅新增。造成該現象的重要原因是正極材料在鋰離子脫嵌時會發生相變或晶格膨脹/收縮,使正極材料的晶格大小在充放電過程中會發生變化。這種體積效應會導致正極材料和導電劑的界面在充放電過程中不斷生成—破碎,消耗可遷移的鋰離子,使電池容量下降。同時,正極材料在充放電時的體積變化會造成其和導電劑和集流體發生剝離,使電池的阻抗大幅上升。Tian和Qi對一維Newman電池基于Poisson接觸力學理論進行計算模擬,發現電極和導電劑和集流體的剝離行為發生在循環后,該行為導致電池容量的衰減。Bucci等利用力聚區模型對因正極材料體積變化導致全固態電池正極側出現裂紋的行為進行模擬,如圖3所示,證實了只有具備低斷裂能和高體積變化的正極材料才會使全固態電池正極側在充放電過程中出現裂紋并使其在正極側蔓延傳播。


圖3正極材料有限元模型的幾何、離散化和邊界條件示意圖。電極材料顆粒嵌入了固態電解質和電子導電劑顆粒中


在全固態電池正極側施加壓力可以有效抑制因正極材料體積變化出現的裂紋蔓延現象。Janek等證實加壓可以有效抑制因LCO在充放電過程中鋰離子脫嵌出現的體積變化造成的裂紋蔓延現象,有效提升全固態電池正極材料固 ̄固界面的機械穩定性。Koerver等發現即使是采用零體積應變材料Li4Ti5O12作為全固態電池正極材料,在正極側依舊會出現裂紋。所以,在全固態電池中,提升界面的機械穩定性,改善正極材料間兼容性是未來全固態電池正極材料固-固界面的研究重點。


熱穩定性


固態電解質和正極材料混合后,分解溫度會大大低于其正常分解溫度。研究發現,熱分解過程通常在固態電解質和正極材料接觸的部分,即固-固界面處開始發生,然后逐漸向材料內部蔓延。在對氧化物固態電解質和正極材料界面熱穩定性的研究中,Gellert等通過XRD對LATP和LMO正極材料的固-固界面的熱分解產物進行表征,發現該界面在500℃發生了分解,同時LMO正極側出現無鋰氧化物,而在LATP電解質側出現如Li3PO4的含鋰磷酸鹽。由于這些含鋰磷酸鹽的熔點較低,故界面的分解溫度進一步降低。Inoue等發現LLZTO和石墨以及Li0.47CoO2的固-固界面在480℃即發生了分解。Miara等利用XRD和差示掃描量熱DSC分別對LLZO和LATP固態電解質和LCMO、LNMO和LFMO尖晶石結構正極的界面熱穩定性進行探究,如圖4所示。結果表面,LLZO和尖晶石結構正極的界面在600℃即發生分解,而LATP和尖晶石結構正極的界面在700℃才開始分解。由于鋰元素從固態電解質向尖晶石正極材料擴散,LLZO和尖晶石正極界面在高于600℃的溫度下生成富鋰錳氧化物Li2MnO3和各種無鋰氧化物,而LATP和尖晶石正極界面在高于700℃的溫度下生成Li3PO4、各種無鋰氧化物和無鋰磷酸鹽。


圖片圖4不同尖晶石型正極材料和LATP,LLZO固態電解質的分解溫度以及兩兩混合后的分解溫度示意圖


有關硫化物固態電解質和正極材料間固-固界面的熱穩定性研究較少。Tsukasaki等利用TEM和DSC對75Li2S-25P2S5體系非晶態硫化物固態電解質和NCM111正極材料的界面進行表征,發現其在200℃時出現未知晶體相。和氧化物固態電解質類似,聚合物固態電解質和正極材料固-固界面在加熱到一定的溫度時,聚合物固態電解質中的鋰鹽和正極材料和聚合物基體發生反應,生成碳酸鋰等產物,使界面發生熱失效。Xia等通過XRD和DSC測試對PEO+LiTFSI聚合物固態電解質和LiCoO2、LiNiO2、LiMn2O4、V2O5、V6O13和LixMnO2正極的界面熱穩定性進行研究,發現聚合物固態電解質和不同正極材料的界面在210~340℃發生了分解,分解的產物重要是Li2CO3、Li2O、LiF等含鋰化合物,金屬氧化物和未知組分的氣體。同時,充電態下正極和聚合物固態電解質的界面分解溫度要高于放電態下界面的分解溫度。


界面優化方法簡介


由于全固態電池的工作環境溫度接近室溫,所以,相比于提升全固態鋰電池正極材料固-固界面的化學穩定性和熱穩定性,提升界面的電化學穩定性和機械穩定性,防止正極和固態電解質在充放電過程中發生化學反應,抑制正極顆粒在充放電過程中的破碎現象,是提升全固態電池電化學性能的關鍵。防止正極材料和固態電解質在充放電過程中發生化學反應,可以有效防止界面不斷發生分解—生成的過程,減少在該過程中消耗的鋰離子,提高全固態電池的庫倫效率和循環壽命。抑制正極顆粒在充放電過程中的破碎現象可以防止因顆粒破碎而導致的接觸不良和界面破壞,提高全固態電池的容量和循環壽命。針對這兩個問題,有效的全固態電池正極固-固界面優化方法重要有正極顆粒表面包覆、三維多孔固態電解質制備以及低熔點離子導體優化改性。


正極顆粒表面包覆是最常用的全固態鋰電池正極材料固-固界面的優化方法,該方法是在正極材料表面包覆一層在高電壓下穩定、離子電導率高和電子絕緣的鋰離子導體,達到隔絕正極和固態電解質,防止其在充放電時發生反應的目的。同時,這層鋰離子導體可以有效抑制正極顆粒在充放電時因體積變化導致的破碎。常見的正極表面包覆層有Li3PO4、LiNbO3以及各種鋰離子導體等,常用的處理方式為溶膠凝膠法、噴涂法、絲網印刷法、旋涂法、脈沖激光沉積(PLD)、原子層沉積(ALD)等。然而,正極顆粒表面包覆不能解決正極材料和固態電解質之間接觸面積過小的問題,所以不能用于氧化物固態電解質體系全固態電池。另外,除了PLD、ALD等濺射手段,其他包覆方式得到的產物存在包覆層不均勻的問題,重要原因是其他的包覆方式均為機械混合。而PLD、ALD等濺射手段的制備成本較高。因此,如何利用成本較低的手段對正極材料表面進行包覆是未來該方向的研究關鍵。


三維多孔固態電解質可以將正極負載在多孔固態電解質的孔內,使正極材料和固態電解質充分接觸,同時也可以抑制正極材料在充放電時發生破碎現象。制備三維多孔固態電解質重要有流延法和模板法。相比于工藝較為復雜、成本較高的流延法,模板法工藝更簡單、成本較低。Zhang等利用模板法制備了三維多孔結構LAGP固態電解質并將高鎳三元正極材料NCM811負載在孔中,如圖5所示.和普通LAGP陶瓷相比,三維多孔結構LAGP能使全固態電池具有更高的載量、更高的容量發揮和更好的循環性能。三維多孔固態電解質優化多用于氧化物固態電解質和聚合物固態電解質體系,但是,三維多孔固態電解質無法有效提高正極材料和固態電解質固-固界面的電化學穩定性,將其和正極顆粒表面包覆相結合,是該方法未來的研究重點。


圖片圖5高NCM811正極材料負載量的三維結構LAGP全固態鋰電池示意圖


在正極材料中混入低熔點離子導體,通過施加高于離子導體熔點的溫度使離子導體融化后冷卻,均勻分布在正極材料和固態電解質之間,這種方法不僅可以防止正極材料和固態電解質接觸發生反應。而且可以提高正極材料和固態電解質之間的接觸面積,還能改善因正極顆粒在充放電時發生破碎而導致的接觸不良的問題。Han等在LCO和LLZO界面處加入低熔點的LCBO,如圖6所示。LCBO使LCO和固態電解質的接觸面積增大,同時減小了LCO在充放電過程中因體積變化導致的顆粒破碎對正極材料和導電劑之間接觸性能的影響。另外,利用LCBO隔絕LCO和LLZO,防止了兩者之間在充放電過程中發生反應。3方面共同用途,提升了LCO/LLZO/Li全固態鋰電池的電化學性能,然而,該方法的制備工藝非常復雜,成本較高。


圖6全陶瓷正極-固態電解質界面改性示意圖


全固態鋰電池的室溫循環性能、倍率性能以及庫倫效率低下限制了其在現實中的應用。正極材料固-固界面穩定性不佳是造成全固態鋰電池室溫性能不佳的重要原因。目前,有關該固-固界面的優化研究已經取得了顯著的成果,但仍有許多關鍵問題亟待解決:①正極材料和固態電解質界面潤濕性的微觀機制認識不清;②活性物質在正極材料中的比例偏低;③缺乏對界面層成分和結構的選擇以及界面層和正極、電解質的界面相容性的研究。解決以上問題是全固態鋰電池正極材料固-固界面研究的重要任務。


另外,對全固態鋰電池正極材料固-固界面在充放電過程中物相和形貌變化的表征手段也限制了正極材料固-固界面的優化。受限于測試精度,物相分析最常用的XRD法無法應用于正極固-固界面在充放電過程中物相變化的表征,加大了研究難度。目前,常用的正極固-固界面變化的表征手段僅有SEM、TEM、XPS、核磁共振(NMR)等少數幾種,且表征效果不佳,原位表征手段更為稀缺。所以,發展新的全固態鋰電池正極材料固-固界面表征技術,特別是結合各種原位表征手段是未來全固態鋰電池正極材料固-固界面研究的重要方向。


參考:李煜宇等《全固態鋰電池正極界面的研究進展》圖片(來源:鋰電聯盟會長)



相關產品

午夜一区二区三区视频| 成功精品影院| 成人免费看视频网站| 日本在线视频中文有码| 中文在线一二区| 97秋霞电影网| 亚洲国产精彩中文乱码av| 亚洲第一中文字幕| 日韩一区国产二区欧美三区| 亚洲va欧美va人人爽| 丁香五精品蜜臀久久久久99网站| 青青青伊人色综合久久| 久久久久久一二三区| 精品久久久久久久久久久久| 久久久三级国产网站| 国产亚洲一本大道中文在线| 亚洲va国产天堂va久久en| 国产精品自拍一区| 久久综合中文| 精品亚洲欧美一区| 激情小说亚洲一区| 亚洲国产视频一区| 亚洲欧美日韩综合| 午夜激情成人网| 亚洲免费中文| 中文字幕乱码亚洲精品一区 | 香蕉免费一区二区三区在线观看| 日韩国产一二三区| 中文字幕乱码在线播放| 69堂精品视频在线播放| 蜜桃视频m3u8在线观看| 日韩三区免费| **精品中文字幕一区二区三区| 成人女性视频| 国产乱人伦偷精品视频不卡| 婷婷丁香激情综合| 亚洲精品自拍偷拍| 精产国产伦理一二三区| 亚洲国产欧美日韩精品| 亚洲黄色片在线观看| 国产精品视频免费| 久久久亚洲精品石原莉奈 | 日本一二三四高清不卡| 一本大道av一区二区在线播放| 337p日本欧洲亚洲大胆精品| 男人的天堂在线| 视频三区在线| 欧美经典一区| 亚洲大片精品免费| 国产成人福利片| 制服.丝袜.亚洲.另类.中文| 欧美无毛视频| 丝瓜av网站精品一区二区| 欧美日韩大陆在线| 操你啦在线视频| 在线观看三级视频| 不卡中文字幕| 亚洲一区二区免费看| 91在线云播放| 欧美视频在线观看免费| 亚洲国产又黄又爽女人高潮的| 在线免费av网址| 在线观看特色大片免费视频| 日韩电影精品| 999精品视频在这里| 欧美变态网站| 欧美激情视频一区二区三区在线播放| 国语精品一区| 久久99精品网久久| 色呦呦网站一区| 先锋影音欧美性受| 成人精品动漫| 欧美色图国产精品| 亚洲欧洲日韩女同| 91福利免费在线| av资源中文在线天堂| 成人全视频在线观看在线播放高清| 日韩欧美中文字幕在线视频| 欧美日韩天堂| ...av二区三区久久精品| 亚洲高清福利视频| caopo在线| 欧美自拍视频| 久久亚洲综合色| 欧美系列一区二区| 嫩草视频在线观看| 视频一区二区三区不卡| 超碰人人在线| 欧美日韩在线精品一区二区三区激情综合 | 免费成人美女在线观看.| 国产韩日影视精品| 日韩动漫一区| 成人在线啊v| 中文字幕在线直播| 97caopron在线视频| 91精品久久久久久9s密挑 | 一本大道av一区二区在线播放| 中文字幕佐山爱一区二区免费| 成人在线综合网| 蜜臀精品久久久久久蜜臀| 在线播放日韩| 欧美1区2区| 日韩三级在线| 亚洲制服欧美另类| 黄色美女久久久| 麻豆国产一区| 免费一区二区三区四区| 欧美xxx视频| 日本黄色免费在线| 大黄网站在线观看| 91cn在线观看| 日本在线观看| 国模吧精品人体gogo| 一级片在线播放| 成人xxxx| 污污网址在线观看| 久热久精久品这里在线观看| 老鸭窝av在线| 国产中文字幕第一页| fc2ppv完全颜出在线播放| 国产视频精品免费播放| 亚洲精品www| 亚洲国产精品yw在线观看 | 欧美天天综合| 精品国产精品久久一区免费式| 校花撩起jk露出白色内裤国产精品| 亚洲精品午夜| 日韩高清二区| caoporn成人| 国产欧美三级电影| 红杏视频成人| 免费国产自久久久久三四区久久| 妖精视频一区二区三区免费观看| 日韩精品福利一区二区三区| 亚洲a级精品| 不卡一区综合视频| 亚洲欧美偷拍自拍| 国产精品v亚洲精品v日韩精品| 欧美午夜在线| 亚洲美女视频在线免费观看| av成人激情| 久久亚洲美女| 久久国产成人午夜av影院| 国内精品伊人久久久久av一坑| 激情综合色播五月| 不卡高清视频专区| 久久婷婷综合激情| 国产精品久久久久久妇女6080| 亚洲欧美综合另类在线卡通| 夜夜操天天操亚洲| 欧美性感美女h网站在线观看免费| 色婷婷综合五月| 欧美人妖巨大在线| 欧美精品一区二区久久久| 亚洲人成欧美中文字幕| 粉嫩粉嫩芽的虎白女18在线视频| 玖玖综合伊人| 成人福利在线| 黄色成人在线观看| 激情aⅴ欧美一区二区欲海潮| 激情亚洲影院在线观看| 国产一区二区三区精品在线观看| 国产一区调教| 婷婷激情图片久久| 美日韩精品视频| 国产一本一道久久香蕉| 久久香蕉国产线看观看99| 亚洲欧洲成人av每日更新| 精品福利视频导航| 91精品国产色综合久久不卡电影| 亚洲精品久久久久中文字幕二区| 亚洲伦理电影| 日本综合在线| 亚洲伦乱视频| 精品少妇一区| 亚洲乱码精品| 老汉av免费一区二区三区 | 国产伦精品一区二区三区免费| 久久亚洲精品小早川怜子| 亚洲美女偷拍久久| 欧美日韩一级片在线观看| 日韩精品中文字| 你懂的免费在线观看| 欧美人与禽猛交乱配| 国产精品美女午夜爽爽| 外国成人在线视频| 亚洲蜜桃视频| 精品一区二区三区香蕉蜜桃| 国产午夜亚洲精品不卡| 懂色av中文一区二区三区天美| 欧美一区二区黄色| 在线播放国产区| 污的网站在线观看| 美女精品久久| 久久久人成影片免费观看| 蜜桃视频免费观看一区| 国产精品热久久久久夜色精品三区| 色综合欧美在线视频区| gay视频丨vk| 在线观看a级片|